MODELED CHANGES TO GREAT SALT LAKE SALINITY FROM RAILROAD CAUSEWAY ALTERATION

James White

Graduate student
Utah State University
Watershed Science Department
whitej33@gmail.com

Co-authors:
Sarah Null
David Tarboton

Overview

- 1) Brief introduction and history of Great Salt Lake (GSL) and Union Pacific Railroad (UPR) causeway
- 2) Model methods
 - 1) USGS Great Salt Lake Fortran Model
 - 2) Different model runs
 - Limitations of model
- 3) Results
 - 1) Validation of methods
 - 2) Results of each model run
- 4) Conclusions

From June 2014 report"Modeled changes to Great Salt
Lake salinity form railroad
causeway alteration"

- 5) Additional UPR bridge designs Mo
- 6) Questions

Model runs not in report or previous presentation (8/6)

Great Salt Lake

Remnant of historic Lake Bonneville

- Largest saline lake in Western Hemisphere
- Fourth largest saline lake in World
- Contributes \$1.3 billion to local/regional economy
- Vital link in Pacific flyway
- Simple, but very productive foodweb

Great Salt Lake

Surface inflow ~ 64%

Groundwater ~ 3%

Direct precip ~ 33%

~ 100%

Major surface inflows:

Bear River ~ 55%

Weber River ~ 12%

Jordan River ~ 26%

Ephemeral streams ~ 7%

~ 100%

Causeway on Great Salt Lake

- Built in 1959 by Union Pacific Railroad (UPR)
- Two 15 ft wide culverts included to allow boat passage
- 280 ft "breach" added in 1980 to alleviate flooding
- Effectively separates Gilbert Bay (south arm) and Gunnison Bay (north arm)
- Built on soft lake sediments
 - Slowly subsided over time
- 95% of incoming freshwater enters south arm

Causeway on GSL

- Net export of salt from south to north
- Significant salinity gradient between north and south arm
 - North arm often at or near saturation (350 g/L)
 - South averages 142 g/L since 1966
- Ecology differs
 - North too saline for significant populations of brine shrimp
 - Dominated by red algae and archaea
 - South usually provides appropriate salinity for brine shrimp and brine flies
- Creates "deep brine layer" in south arm

Causeway on GSL

Modeling Methods

Modeling Methods - USGS GSL Fortran Model

- First developed in 1973 (Waddel and Bolke)
- Updated in 1997 (Wold et al.)
 - Includes culvert and breach flow calculations
- Most recent USGS update in 2000 (Loving et al.)
 - Developed trapezoidal calculations
 - Developed submerged flow calculations
 - Updates subsidence data on causeway
- Our Updates
 - Changes mainly to improve usability and flexibility of model
 - Ran simulations from 1966-2012
 - Includes proposed bridge design and other alternatives

Modeling Methods - USGS GSL Fortran Model

How model works:

- Model uses a "mass balance" approach to calculate changes of water volume and salt load at each time interval
- Flow through culverts and breach calculated by equations developed by Wold et al. (1997)
- Input data from USGS, OSU Prism, and Loving et al.

Modeling Methods - USGS GSL Fortran Model

Initial conditions

Each arm:

- Mineral loads
- Lake elevation

Monthly Inputs

Streamflow

USGS Streamflow Data for:

- Bear River
- Jordan River
- Weber River

Evaporation

Calculated via mass balance (more accurate than meteorological equations)

Direct Precipitation

Obtained from Oregon State University PRISM program Updated USGS Great Salt Lake Model

Monthly aggregated outputs (each arm):

- Lake elevation/volume
- Mineral load
- Mineral concentration (salinity)
- Flow through openings

Model limitations

- Flow through culverts assumed zero when submerged
 - More accurate than using equations developed by Loving et al. (2000) due to blockage of culverts
- Assumes homogenous salinity in each arm
- Does not track deep brine layer

Photo: Jacobs Associates

Model limitations

Different model runs

- "Historical" uses historical climate data to evaluate model's ability to replicate measured data
- "Proposed Bridge" Identical to historical, but culverts and been replaced with proposed bridge specifications
- "Current condition" Causeway condition as of March, 2014 – culverts closed, breach deepened, causeway fully subsided conditions
 - "Whole Lake" Theoretical single salinity lake, as if no causeway present
 - Sensitivity analysis +/- 20% bridge length, 60/180' rectangular bridge

All models use identical climate

Different Model runs

 Updated (since 8/6) to include additional bridge designs outlined in UPR report

Statistical validation:

Nash-Sutcliffe Efficiency (NSE)						
Level		Sali	nity	Load		
North	South	North	South	North	South	
0.99	0.99	0.94	0.89	0.78	0.36	

NSE – unitless value, ranging from 0-1.

0 = zero correlation

1 = perfect model fit

Statistical validation:

Nash-Sutcliffe Efficiency (NSE)						
Level		Salinity		Load		
North	South	North	South	North	South	
0.99	0.99	0.94	0.89	0.78	0.36	

Attributed to:

- 1) No flow when culverts submerged
- 2) Potential small overestimate of load loss to West Desert
- 3) Imprecise historical data calculated, not measured

Model results – "current condition"

Model results – bridge design analysis

Model results – bridge design analysis

Model results – bridge design analysis

Bridge design sensitivity results

Bridge design sensitivity results

Model results -statistics

	Model Run	Mean salinity North (g/l)	Max salinity North (g/l)	Min salinity North (g/l)	Mean salinity South (g/l)	Max salinity South (g/l)	Min Salinity South (g/l)
	Historical	317	351	183	142	276	64
	Subsided	307	351	168	132	276	72
	Proposed Bridge	276	351	143	176	277	88
	Whole Lake	222 (mean)		351 (max)		115 (min)	
sensitivity analysis	Bridge + 20% length	275	351	142	177	277	88
	Bridge -20% length	278	351	144	175	277	87
	60ft rectangular bridge	282	351	147	172	277	86
	180ft rectangular bridge	257	350	134	189	278	93

Conclusions

- Updated USGS causeway model effectively replicates historic conditions (high model confidence)
- Proposed bridge reduces north arm salinity 41 g/L, on average compared to historic culverts
- Proposed bridge increases south arm salinity 34 g/L, on average compared to historic culverts
- Current (2014) condition results in less flow exchange and greater salinity differences compared to historic causeway condition and proposed bridge
- Shape of bridge more important than size
 - Trapezoid's triangular sides not as important as middle rectangle
 - Consistent with Loving et al. analysis of design of breach

Additional UPR bridge designs

Additional bridge designs

Figure 1. Alternative Bridge Sizes

in feet

Table 2. Summary of Alternative Bridge Geometry Parameters

Channel **Bottom** Low Chord Increase in Width Top **Bottom** Elevation Elevation per Increased Width Alternative Width (NGVD 29) (NGVD 29) Foot of Elevation A 180 61 4,178 4.212 3.5 В 150 4,178 4,212 3.5 C 150 49 4.183 4.212 3.5 D 150 4,188 66 4,212 3.5

Future Work

- More accurately model period of submerged culverts
- Submit paper for peer-review publication
- Incorporate climate variability to better understand context of past 60 years
 - Wet period? Dry? Average?
- Incorporate climate change projections to more accurately model future scenarios
- Incorporate ecological studies to evaluate changes to brine shrimp habitat
- Validate flow calculations through breach and future bridge

Acknowledgements

 Funding provided by Utah Department of Natural Resources – Forestry, Fire and State Lands

- Co-authors
 - Dr. Sarah Null
 - Dr. David Tarboton

- Additional Support
 - Dr. Wayne Wurtsbaugh

Questions

James White whitej33@gmail.com

